Algebra 1R Eighth Grade Mr. Lumanauw

Table of Contents

Page #	Торіс
30	Transformations Art Project Rough Draft
31	Transformations Art Project Final Draft
32	Warm-Up #1 & #2 (Review)
33	Transformations Unit 1 Review
34	Blank
35	Transformations Unit 1 Review, continued
36	Unit 2 Priority Standards
37	Unit 2 Real Life Scenario and Essential Questions
38	Exponent and Multiplication Worksheet
39	Multiplication Properties of Exponents
40	Homework Page 197, #16-34 even, 48, 52
41	Exponents with Multiplication and Division
42	Blank
43	Exponents w/ Mult. & Div. (cont.)
44	Homework Page 222, #20-38 even, 57
45	Rational Numbers & Fractions, Decimals, and Percents
46	Blank
47	Rational Numbers & Fractions, Decimals, and Percents, cont.
48	Square Roots
49	Irrational Numbers
50	Approximating Square Roots Worksheet (May also be with Square Roots Grid)
51	Irrational Numbers, cont.
52	HW - Pg. 456 #42, 44, 45-50 all, 54-57 all
53	Square Roots

	Table of Contents
Page #	Topic
54	Blank
55	Square Roots, cont.
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	

Multiplication Table

×	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12
2	0	2	4	6	8	10	12	14	16	18	20	22	24
3	0	3	6	9	12	15	18	21	24	27	30	33	36
4	0	4	8	12	16	20	24	28	32	36	40	44	48
5	0	5	10	15	20	25	30	35	40	45	50	55	60
6	0	6	12	18	24	30	36	42	48	54	60	66	72
7	0	7	14	21	28	35	42	49	56	63	70	77	84
8	0	8	16	24	32	40	48	56	64	72	80	88	96
9	0	9	18	27	36	45	54	63	72	81	90	99	108
10	0	10	20	30	40	50	60	70	80	90	100	110	120
11	0	11	22	33	44	55	66	77	88	99	110	121	132
12	0	12	24	36	48	60	72	84	96	108	120	<mark>132</mark>	144

8.G.7 - Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.

8.G.8 - Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

Unit 2 - Exponents, Square Roots, Pythagorean Theorem

Real Life Scenario

You and two friends have been hired to design a ramp for a Monster Truck company. The company initially want three designs submitted for their review. The provide you with the dimensions of the height and the starting point for the truck and ask you to determine the amount of material they will need to purchase for the incline of the ramp.

Essential Question

1. How do we approximate irrational numbers?

2. How do we solve for the missing side of a right triangle in a real life situation or on the coordinate grid?

Exponents and Multiplication Worksheet

Exponents and Multiplication		7_13 Period	
Simplify. Your answer should contain only po			
11 42 4' 4' = 16 = 2510	2) 4 4" A "" = A = 6A		
-1 -10 -2-4			
3) 32. 32 32+2 = 34 = 92 = 81	4) 2-2"-2" 2"+2+2= 25= 3	2	
3	L - L - J.	Ar-	
5) 2n ⁴ · 5n ⁴	6) 6r · 5r ² 6·5·Y ¹⁺²		
2.5n***	30r3		
IOn®	301	13) 2x3 1003x3 8003 7108 451 V	$14) \ 9xy^2 \ 9x^3y^2$
	8) 6k² · k	TIDB UM V	14) 9xy2-9x3y2 99x115 y212
7) 2n ⁴ · 6n ⁴	6K2+1	560u*V "	81×"4"
26.044	6k3		
12n8	U/~	15). 6m ³ n ³ - 8m ² n ³	16) $6x^2 \cdot 6x^3y^4$
	10) $4x^2 \cdot 3x$	6.8 m 3+2 n 3+3	66x*** 4
9) 56 ¹ - 86	4.3 x2*1	48m5n6	66x**3y* 36x5y*
5.8.B"	12x3		
4063		17) 74225 - 944	18) av - 4av ³
	12) 6x - 6x ³	79.44V 34	4. 4" V"B
11) 6x - 2x ¹	66×"3	6343V8	4 u² v"
62 x"2	36 X4		,
12x'	36 X	19) $10xy^2 - 8x^5y^3$	20) $3u^4v^5 \cdot 7u^2v^3$
		10.8.X +5 3+3	3.7.442 V 5+3
		10.8.X 45 313 80 X 6 Y 6	
		un y	21u°v8
		21) $(2x^2)^2$	22) (p ⁴) ⁴
		2 ² x ^{2.2}	$p^{4.4} = p^{16}$
			I F
		4x*	
		23) (x ¹) ⁴	24) (7A) ²
		K ³⁴ ,	72k2 = 49k2
		K L	1 k -tik
		¥.	
		25) (x2) ¹	26) (252)*
		X = X 6	
		X = X*	2*b24=1668
	I		

Multiplication Properties of Exponents Date 9-16-13

Notes Objective Students will simplify expressions using the multiplication properties of exponents.

Algebra Standard

8.EE.1

Summary The power tells how many times to multiply the base by When multiplying two terms with the same base, add the exponents. If a power is raised to another power, multiply the exponents. $X^2 \cdot X^3 = X^{2+3} = X^5$ $(X^2)^3 = X^{2 \cdot 3} = X^{6}$

Homework

Cues	Notes
Page 197, #16-34 even, 48, 52	
even, 48, 52	
Summary	

Topic:	Exponents with Multiplication and Division
Objective	To multiply and divide powers.
Standard	8.EE.1
Exponent of 1	If the exponent is 1, then you just have the variable or constant itself.
Example	$x^{l} = x$
	2 ¹ = 2
	4x = 4'x'
	We usually don't write the "1"
Exponent of 0	If the exponent is 0, then the answer is 1.
Example	y°= 1
	5 ° = 1
	$(2x)^{2} = 1$
Multiplying variables with exponents	So, how do you multiply this:
	$(y^2)(y^3)$
	The simplest method is to just ADD THE EXPONENTS!
	$y^2y^3 = y^{2+3} = y^5$
Practice 1	$(x^{2}\sqrt{5})(x^{2}yz) =$ $x^{3}x^{5}y^{5}y^{1}z' = x^{3+2}y^{5+2}z = x^{5}\sqrt{2}z$
	$x^{3}x^{5}y^{5}y^{1}z^{1} = x^{3+2}y^{5+1}z^{2} = x^{5}y^{6}z$
Practice 2	(2xy)(4y) =
	$(2)(4)(x)(y)(y) = 8xy^2$

This page left blank!!

Topic:	Exponents with Multiplication and Division
Objective	To multiply and divide powers. CONT.
Standard	8.EE.1
Practice 3	$(3x^2y^2)(4x^2) =$
	$(3)(4)(x^2)(x^2)(y^2) = 12x^{2+2}y^2 = 12x^4y^2$
Dividing Variables with Exponents	So, how do you do this?
	$y^{\overline{y}} = (y)(y)(y) = y$
	$y^2 = (y)(y)^2$
	OR you could have done it like this:
	$y^{3} = y^{3-2} = y' = \gamma$
	y ²
Practice 4	$\frac{\chi^{3}\chi^{2}}{\chi^{2}\chi^{2}} = \chi^{3-1}\chi^{1-2}\chi^{2-2}$ $= \chi^{2}$
Practice 5	$\frac{7c^{9}}{21c^{3}} = \frac{7c^{9-3}}{21} = \frac{1c^{6}c^{6}}{3} = \frac{3}{3}$

Homework

Cues	Notes
Page 222, #20-38 even, 57	
even, 57	
Summary	

Date: 9-24-13

This page left blank!!

Fractions, Decimals, and Percents, Deler 9-24-13

cont.	-	
Com.	Notes	
Changing	Perform Long Division, Botton	m out – Top in.
Fractions to	10 3.	16
Decimals	$\frac{19}{6} \rightarrow 6 19.0$	
	18	
	10	Ő
		6
		40
		40 36
		4
Changing	Here's another one:	One more:
Decimals to	$.5 = \frac{5}{10} \leftarrow$ Hey, this guy simplifies!	.325
Fractions	tenths $\left(\frac{1}{10}\right)$	Last spot $\rightarrow \frac{1}{1000}$
	$.5 = \frac{5}{10} \div \frac{5}{5} = \frac{1}{2}$	$.325 = \frac{325}{1000} \div \frac{25}{25} = \frac{13}{40}$
	so, $.5 = \frac{1}{2}$	Reduce it!

Summary

Warm Up - Square Roots

9-25-13

The length of a side

Draw a square with an area of 9 units squared.

Irrational Numbers

Cues	Notes
Objective	To compare and order real
Standards	numpers.
Identifying	a) 2 - irrational because
Rational and	2 is a positive integer but not a perfect square. b)-+→ rational because it is a quotient of 2
Irrational Numbers	but not a perfect square.
NUMbers	b)-; > rational because
	it is a quotient of 2
	integers.
	C)-Viva-rational because
	$-\sqrt{109} = -13$.
	d)1.2112112> irrational because it is not termin- ating and not repeating.
	because it is not termin-
	ating and not repeating.
Summary	••••

Approximating Square Roots Worksheet

Date: 9-25-13

Homework

9-26-13

Cues Page 456	Notes
#42, 44, 45	5-50 all, 54-57 all
0	
Summary	

Square Roots

Date: 9-26-13

Cues	Notes				
Objective	To find and approximate				
Cojective	square roots of numbers.				
Standard	8.EE.1				
Radical Expression	An expression that involves a square				
	root sign. $\sqrt{2x^2+5}$				
Square Roots	Reals				
	Rationals Irrationals				
	$\sqrt{0} = 0 \qquad \qquad \sqrt{2} \approx 1.414$				
	$\sqrt{1} = 1$ $\sqrt{3} \approx 1.732$				
	$\sqrt{4} = 2 \qquad \qquad \sqrt{5} \approx 2.236$				
	$\sqrt{9} = 3 \qquad \qquad \sqrt{6} \approx 2.449$				
	$\sqrt{16} = 4 \qquad \sqrt{7} \approx 2.646$ $\sqrt{25} = 5 \qquad \sqrt{8} \approx 2.828$				
	$\sqrt{25} = 5 \qquad \qquad \sqrt{8} \approx 2.828$				
	EXAMPLE #1 Evaluate the Radical Expression				
	Evaluate the Expression				
	a) $\sqrt{0} = 0$ f) $2 + \sqrt{9} = 2 + 3$				
Summary	$(-b) - \sqrt{49} = -7$ = 5				
	$-0) - \sqrt{49} = -1$				
	c) $\pm \sqrt{81} = \pm 9$ g) $3 \pm \sqrt{25} = 3 \pm 5$				
	$(-d)\sqrt{256} = 16$ $(3+5)^3 - (3-1)^3$	5			
	$(e) \pm \sqrt{169} = \pm 13$	>			
	-				

This page left blank!!

Square Roots, cont. 9-26-13		
EXAMPLE #2 Evaluate the Radical Expressions		
• Evaluate the expression when $a = 12$ and $b = 4$		
$\sqrt{a+b}$	$\sqrt{b^2 - a}$	$3\sqrt{ab+1}$
$\sqrt{12 + 4}$	$\sqrt{4^2 - 12}$	$3\sqrt{(12)(4)+1}$
$\sqrt{16}$	$\sqrt{16 - 12}$	$3\sqrt{48+1}$
	$\sqrt{4}$	3\[3\]
4	• •	3.7
	2	21
EXAMPLE #3 Solve Quadratic Equations		
Solve each equation		
a) $x^2 = 16$ b) $p^2 = 225$ c) $k^2 = 15$		
$\sqrt{x^2} = \sqrt{16}$ $\sqrt{p^2} = \sqrt{225}$ $\sqrt{k^2} = \sqrt{15}$		
$ x = 4$ $ p = 15$ $ k = \sqrt{15}$		
$x = \pm 4$	$p = \pm 15$ k	$=\pm\sqrt{15}$
d) $x^2 = -4$	e) $x^2 = 0$	
No real solution $x = 0$		