Algebra 1R

Eighth Grade

Mr. Lumanauw

Table of Contents

Page \#	Topic
30	Transformations Art Project Rough Draft
31	Transformations Art Project Final Draft
32	Warm-Up \#1 \& \#2 (Review)
33	Transformations Unit 1 Review
34	Blank
35	Transformations Unit 1 Review, continued
36	Unit 2 Priority Standards
38	Unit 2 Real Life Scenario and Essential Questions
39	Exponent and Multiplication Worksheet
40	Homework Page 197, \#16-34 even, 48, 52
41	Exponents with Multiplication and Division
42	Blank
43	Exponents w/ Mult. \& Div. (cont.)
44	Homework Page 222, \#20-38 even, 57
45	Rational Numbers \& Fractions, Decimals, and Percents
46	Blank
47	Rational Numbers \& Fractions, Decimals, and Percents, cont.
48	Square RoOtS
49	Irrational NumberS
50	Approximating Square Roots Worksheet (May also be with Square Roots Grid)
51	Irrational NumberS, COnt.
52	HW - Pg. 456 \#42, 44, 45-50 all, 54-57 all
53	Square Roots

Table of Contents

Page \# Topic
54 Blank
55 Square Roots, cont.
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Multiplication Table

\times	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12
2	0	2	4	6	8	10	12	14	16	18	20	22	24
3	0	3	6	9	12	15	18	21	24	27	30	33	36
4	0	4	8	12	16	20	24	28	32	36	40	44	48
5	0	5	10	15	20	25	30	35	40	45	50	55	60
6	0	6	12	18	24	30	36	42	48	54	60	66	72
7	0	7	14	21	28	35	42	49	56	63	70	77	84
8	0	8	16	24	32	40	48	56	64	72	80	88	96
9	0	9	18	27	36	45	54	63	72	81	90	99	108
10	0	10	20	30	40	50	60	70	80	90	100	110	120
11	0	11	22	33	44	55	66	77	88	99	110	121	132
12	0	12	24	36	48	60	72	84	96	108	120	132	144

Unit 2 - Exponents, Square Roots, Pythagorean

8.G.7 - Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
8.G.8 - Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

Unit 2 - Exponents, Square Roots, Pythagorean Theorem

Real Life Scenario

You and two friends have been hired to design a ramp for a Monster Truck company. The company initially want three designs submitted for their review. The provide you with the dimensions of the height and the starting point for the truck and ask you to determine the amount of material they will need to purchase for the incline of the ramp.

Essential Question

1. How do we approximate irrational numbers?
2. How do we solve for the missing side of a right triangle in a real life situation or on the coordinate grid?

Exponents and Multiplication Worksheet

38

Multiplication Properties of Exponents

The power tells how many times to multiply the base by. When multiplying two terms with the same base, add the exponents. If a power is raised to another power, multiply the exponents.

$$
\begin{aligned}
& x^{2} \cdot x^{3}=x^{2+3}=x^{5} \\
& \left(x^{2}\right)^{3}=x^{2.3}=x^{6}
\end{aligned}
$$

Homework

Cues
Page 197, \#16-34 even, 48, 52

Notes

Topic:

Exponents with Multiplication and Division

Objective
Standard

Exponent of 1

Exponent of 0

Multiplying variables with exponents

To multiply and divide powers.
8.EE. 1

If the exponent is 1 , then you just have the variable or constant itself.
$x^{1}=x$
$2^{1}=2$
$4 x=4^{\prime} x^{\prime}$
We usually don't write the "1"

If the exponent is 0 , then the answer is 1 .

Example $|$| $y^{0}=1$ |
| :--- |
| $5^{\Delta}=1$ |
| $(2 x)^{\rho}=1$ |

So, how do you multiply this:
$\left(y^{2}\right)\left(y^{3}\right)$
The simplest method is to just ADD THE EXPONENTS! $y^{2} y^{3}=y^{2+3}=y^{5}$

Practice $1\left(x^{3} \sqrt{5}\right)\left(x^{2} y z\right)=$

$$
x^{3} x^{5} y^{5} y^{1} z^{1}=x^{3+2} y^{9 t^{\prime}} z=x^{5} y^{6} z
$$

$$
\begin{array}{l|l}
\text { Practice } 2 & (2 x y)(4 y)= \\
& (2)(4)(x)(y)(y)=8 x y^{2}
\end{array}
$$

This page left blank!!

8.EE. 1
$\left(3 x^{2} y^{2}\right)\left(4 x^{2}\right)=$
$(3)(4)\left(x^{2}\right)\left(x^{2}\right)\left(y^{2}\right)=12 x^{2+2} y^{2}=12 x^{4} y^{2}$

Dividing Variables with Exponents

So, how do you do this?

$$
\begin{aligned}
& y^{3}=\left(y^{\prime}\right)(y)(y)=y \\
& y^{2}=(y)(y)^{4}
\end{aligned}
$$

OR you could have done it like this:

$$
\frac{y^{3}}{y^{2}}=y^{3-2}=y^{\prime}=y
$$

Practice 4

$$
\text { Practice } 5
$$

$$
\begin{aligned}
\frac{x^{3} y z^{2}}{x y^{2} z^{2}} & =x^{3-1} y^{1-2} z^{2 \cdot 2} \\
& =\frac{x^{2}}{y} \\
\frac{7 c^{9}}{21 c^{3}} & =\frac{7}{21} c^{9-3}=\frac{1}{3} c^{6}=\frac{c^{6}}{3}
\end{aligned}
$$

Homework

Cues
Page 222, \#20-38 even, 57

Notes

$\frac{\text { Cues }}{\frac{1}{2}}$
Page 222, \#20-38
even, 57

Summary

Cues
Objective Standard Real Numbers

Notes

To write fractions as decimals and vice versa. 8.NS. 1

Fractions, Decimals, \& Percents Changing Percents to Fractions
Summary

- Drop the \% sign.
- Put the number over 100.
- Reduce.

$$
\frac{8}{100}=\frac{2}{25} \quad \frac{120}{100} \stackrel{2}{2}_{=}^{2} \frac{6}{5}=1 \frac{1}{5}
$$

8\%
120\%

This page left blank!!

Fractions, Decimals, and Percents, $9-24-13$

 cont.Changing
Fractions to Decimals

Changing Decimals to Fractions

Notes

- Perform Long Division, Bottom out - Top in.

Here's another one:
$.5=\frac{5}{10} \leftarrow$ Hey, this guy simplifies!
tenths $\left(\frac{1}{10}\right)$
One more:
.325
,
$.5=\frac{5}{10} \div \frac{5}{5}=\frac{1}{2}$
$.325=\frac{325}{1000} \div \frac{25}{25}=\frac{13}{40}$
So, $.5=\frac{1}{2}$
$\uparrow_{\text {Reduce it! }}$

Summary

Warm Up - Square Roots

Draw a square with an area of 9 units squared.

Draw a square with an area of 16 units squared.

$$
\begin{aligned}
& 4 \cdot 4=16 \\
& \sqrt{16}=4
\end{aligned}
$$

Draw a square with an area of 12 square units.

Approximating Square Roots Worksheet

Estimating Square Aoots
Use a number line

1. $\sqrt{5}=-2.1$

2. $\sqrt{24}=64.9$

3. $\sqrt{17}=\approx 4.1$

4. $\sqrt{30}=3.5 .4$

$\sqrt{5}$ is between 2 and 3 . $\sqrt{5} \approx 2.1$

$\sqrt{85}$ is between 9 and 10

$$
\sqrt{85} \approx 9.3
$$

Homework

$9-26-13$

Nass
 Page 456
 \#42, 44, 45-50 all, 54-57 all

Summary

Square Roots

co

Objective

 StandardRadical Expression

Square Roots

Notes

To find and approximate square roots of numbers.
 8.EE. 1

An expression that involves a square root sign. $\sqrt{2 x^{2}+5}$

EXAMPLE \#1 Evaluate the Radical Expression
Evaluate the Expression
a) $\sqrt{0}=0$
f) $2+\sqrt{9}=2+3$
$=5$
b) $-\sqrt{49}=-7$
g) $3 \pm \sqrt{25}=3 \pm 5$

c) $\pm \sqrt{81}= \pm 9$
d) $\sqrt{256}=16$
e) $\pm \sqrt{169}= \pm 13$
$>$

This page left blank!!

Square Roots, cont.

EXAMPLE \#2 Evaluate the Radical Expressions

- Evaluate the expression when $a=12$ and $b=4$

$\sqrt{a+b}$	$\sqrt{b^{2}-a}$	$3 \sqrt{a b+1}$
$\sqrt{12+4}$	$\sqrt{4^{2}-12}$	$3 \sqrt{(12)(4)+1}$
$\sqrt{16}$	$\sqrt{16-12}$	$3 \sqrt{48+1}$
4	$\sqrt{4}$	$3 \sqrt{49}$
	2	3.7
	21	

EXAMPLE \#3 Solve Quadratic Equations
Solve each equation
a) $\mathrm{x}^{2}=16$
b) $\mathrm{p}^{2}=225$
c) $\mathrm{k}^{2}=15$
$\sqrt{\mathrm{x}^{2}}=\sqrt{16}$
$\sqrt{\mathrm{p}^{2}}=\sqrt{225}$
$\sqrt{\mathrm{k}^{2}}=\sqrt{15}$
$|x|=4$
$\mathrm{p} \mid=15$
$|\mathrm{k}|=\sqrt{15}$
$\mathrm{x}= \pm 4$
$\mathrm{p}= \pm 15$
$\mathrm{k}= \pm \sqrt{15}$
d) $x^{2}=-4$
e) $x^{2}=0$
No real solution

$$
x=0
$$

